想必现在有很多小伙伴对于如图,四棱锥$P-ABCD$中,$PB\bot $底面$ABCD$,$CD\bot PD$,底面$ABCD$为直角梯形$,AD$∥$BC$,$AB\bot BC$,$AB=AD=PB=3$,点$E$在棱$PA$上,且$PE=2EA$.(1)求$BC$的长;(2)求异面直线$PA$与$CD$所成的角;(3)求二面角$A-BE-D$的余弦值.","title_text":"如图,四棱锥$P-ABCD$中,$PB\bot $底面$ABCD$,$CD\bot PD$,底面$ABCD$为直角梯形$,AD$∥$BC$,$AB\bot BC$,$AB=AD=PB=3$,点$E$在棱$PA$上,且$PE=2EA$.(1)求$BC$的长;(2)求异面直线$PA$与$CD$所成的角;(3)求二面角$A-BE-D$的余弦值.方面的知识都比较想要了解,那么今天小好小编就为大家收集了一些关于如图,四棱锥$P-ABCD$中,$PB\bot $底面$ABCD$,$CD\bot PD$,底面$ABCD$为直角梯形$,AD$∥$BC$,$AB\bot BC$,$AB=AD=PB=3$,点$E$在棱$PA$上,且$PE=2EA$.(1)求$BC$的长;(2)求异面直线$PA$与$CD$所成的角;(3)求二面角$A-BE-D$的余弦值.","title_text":"如图,四棱锥$P-ABCD$中,$PB\bot $底面$ABCD$,$CD\bot PD$,底面$ABCD$为直角梯形$,AD$∥$BC$,$AB\bot BC$,$AB=AD=PB=3$,点$E$在棱$PA$上,且$PE=2EA$.(1)求$BC$的长;(2)求异面直线$PA$与$CD$所成的角;(3)求二面角$A-BE-D$的余弦值.方面的知识分享给大家,希望大家会喜欢哦。
(1)以$B$为原点,$BC$、$BA$、$BP$所在直线分别为$x$轴,$y$轴,$z$轴,
建立空间直角坐标系$B-xyz$.设$BC=a$,
则$Aleft(0,3,0right),Pleft(0,0,3right),Dleft(3,3,0right),Cleft(a,0,0right),$
$overrightarrow {CD}=left(3-a,3,0right)$,$overrightarrow {PD}=left(3,3,-3right)$.
$because CDbot PD$,$therefore overrightarrow {CD}cdot overrightarrow {PD}=3left(3-aright)+9=0$,
解得$a=6$,$therefore Cleft(6,0,0right).therefore BC=6$.
(2)由(1)知$Cleft(6,0,0right)$,$therefore overrightarrow {CD}=left(-3,3,0right)$,$overrightarrow {PA}=left(0,3,-3right)$,
$therefore cos lt overrightarrow {PA}$,$overrightarrow {CD} gt =dfrac{9}{3sqrt{2}times 3sqrt{2}}=dfrac{1}{2}$,
$therefore $异面直线$PA$与$CD$所成的角等于$60^{circ}$.
(3)设平面$BED$的法向量$overrightarrow {n}=left(x,y,zright)$,
$because PE=2EA$,$therefore Eleft(0,2,1right)$,$overrightarrow {BE}=left(0,2,1right)$,$overrightarrow {BD}=left(3,3,0right)$,
由$left{begin{array}{}overrightarrow {n}cdot overrightarrow {BE}=0 overrightarrow {n}cdot overrightarrow {BD}=0end{array}right.$,得$left{begin{array}{}2y+z=0 3x+3y=0end{array}right.$,取$x=1$,得$overrightarrow {n}=left(1,-1,2right)$.
又$because $平面$ABE$的法向量$overrightarrow {m}=left(1,0,0right)$,
$therefore cos lt overrightarrow {n}$,$overrightarrow {m} gt =dfrac{1}{sqrt{6}}=dfrac{sqrt{6}}{6}$,
$therefore $二面角$A-BE-D$的余弦值为$dfrac{sqrt{6}}{6}$.
本文到此结束,希望对大家有所帮助。